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CACHE model: one-dimensional Canopy Atmospheric Chemistry Emission model.



Local Production or Vertical Transport?

Simulated by CACHE
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Trace gas vertical transport associated
with deep convection

Dynamics and Chemistry of Deep Convection
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Deep convection vertical transport:
a quick and effective way

= Deep convections occur in 30 min or less.

= Half the CO entering the PBL over central U.S.
is transported upward by deep convection

(Thompson et al. 1994)

Regional CO Budget - June
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Upward Transport of CO
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Upward Transport of NOXx




Surface Ozone Changes Following
Convective Storms 1
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Surface Ozone Changes Following
Convective Storms 2
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Surface Ozone Changes Following
Convective Storms 3
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Conceptual Model of O; Transport
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Importance of Downward Transport

= O, profile will change
e Radiative forcing
* Dry deposition
= HO ("detergent" of the troposphere) will

increase in lower tropical troposphere

(downward transported O,+enriched H,0 near
surface)

* VOC+HO
* CO+HO
* CH,+HO



Objectives and Approach

Objectives

= Estimate the downward transport of O, by
convective storms, and verify current
conceptual models.

= Quantify the subsequent effect on air
chemistry in lower tropical troposphere.

= Estimate OH production
= VOC, CH,, CO...+OH

Approach
* Cloud Resolving WRF/Chem Simulation



Cloud Resolving Modeling: Step 1
Model: WRF

EpiSOdEZ Aug. 31, 2006 in west Senegal
Resolution

=  Resolutions of 3 nested domains: 27km, 9km, 3km
= Vertical layers: 60 layers up to 10hPa  ENL (Init:08/31/2006 (06:00); Ohr forecast)

configu ration - WSP at 500mb | m/s

=  Turn off cumulus scheme
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Field observations

Ozone data [Grant, Fuentes et al.

(2008)]
Radar data [DeLonge, Fuentes et o : : : : lMin=0MaX18_8112
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Cloud Resolving Modelling: Step 2

Model: WRF/Chem: online model.
Advantages:

= Chemistry is simulated simultaneously with
dynamics. The update frequency of input of
metrological variables to chemistry simulation could
be as short as minutes.

" The chemical-dynamical feedbacks can be simulated.

= Since the same coordinate is used for both chemistry
and dynamics simulation. No interpolation is needed.



